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ABSTRACT

Thompson, Daniel B. M.S., Department of Computer Science,
Wright State University, 1987. A Multiprocessor Avionics
System For An Unmanned Research Vehicle.

The Air Force Flight Dynamics Laboratory is developing a new

Unmanned Research Vehicle (URV) to support low cost/risk in-

house flight tests of advanced flight control concepts.

Implicit to the development of the testbed is the addition

of an advanced on-board avionics system to support

computationally intensive embedded tasks. As the first phase

of the development of this avionics system, a prototype

multiprocessor system and operating system software have

been designed and tested. As demonstration of its

capabilities, the prototype implements a control mixer

algorithm for control surface reconfiguration in the event

of failure. The analysis, design, development, and test

procedures and results of the research of the prototype are

described. Areas of further research in the following phases

of development are also discussed. Accs ___Fr
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PREFACE

Parallel processing research is still pretty much in

its infancy. Much "hype" surrounds many of the efforts to

date. Promises of high performance gains with unbelievable

processor utilization efficiencies are not uncommon. Still,

many potential applications exist, and many varying

solutions to the problems are possible.

Serious research into the technological area still

needs to be performed, particularly in the programming

aspect of the problem. The best way to understand the

technology, and the problems that exist in the application

of the technology, is to get the "hands-on" experience in

the development and use of parallel systems. I am grateful

for the chance given to me by AFWAL/FIGL to gain this

experience, both in this thesis effort and in my normal job

duties.

Many varying disciplines are involved in a development

effort such as this. I thank all those persons who provided

advise or help in those areas where I needed it. Not all can

be mentioned here, but certainly all are appreciated.

Without them, this project could not have been a success. My

sincerest gratitude to:

First and foremost, Dr. Kuldip Rattan, who acted not only as

my thesis advisor, but also served as consultant for the

control mixer applications functions.

Tom Roesle, who helped to construct the VME rack and power

ix



supply system, and procure the necessary parts.

Doug Roy, who provided the necessary URV and 8061 autopilot

information and helped set up the simulation runs.

Dr. R. D. Dixon and Dr. Alastair McAulay, who served on my

thesis committee and provided valuable advice.

And last, but not least, the current generation

"Microteers": Don Pogoda, Mike Rottman, Tom Dermis, Jeff

Mangen, and Vince Crum, who provided draft reviews, hardware

design advice, and idea critiques; and put up with me when

things went the craziest.
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(1) Introduction

The Unmanned Research Vehicle (URV) in-house program at

the Air Force Flight Dynamics Laboratory (AFWAL/FI), Wright

Patterson Air Force Base is developing a new research

testbed to provide a wide range of capabilities in support

of advanced, low cost flight testing of flight control

concepts. Implicit to the development of the testbed

vehicle, hereafter referred to as TN21, is the addition of

an advanced on-board avionics system to support

computationally intensive embedded tests. As it is with the

rest of the vehicle, the avionics system is to be developed

for high capability at low cost.

Single processor architectures, such as the one used in

the current URV system, can be sufficient for basic

autopilot control, but lack the necessary throughput

potential for advanced embedded tests like those envisioned

for future URV applications. The capabilities of

microprocessors and microcontrollers are rapidly improving;

however, the demands on digital systems are outracing this

growth in improvement. For example, adaptive control

algorithms and artificial intelligence (AI) are likely to

drive throughput requirements an order of magnitude or more

beyond previous generation requirements. In contrast, next

generation processors can only be expected to be two to four

times the performance of their predecessors [1,2,3]. As a

result, multiple processor architectures will be required to

meet the goals of advanced system needs and tests.

2,1! IA _ -
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Multiprocessor systems are being utilized in or

researched for many varied applications, including flight

control [4,5,6]. The technology, though not yet mature,

carries many possibilities, the most obvious being high

speed computation. Many multiprocessor architectures have

been proposed [7,8,9]; however, no one architecture has

emerged as being superior to the others over a wide range of

applications. At present, the application dictates the

architecture used.

The purpose of this thesis project is to exploit

advances in microprocessor and memory technology, bussing

systems, and real-time multitasking operating systems

techniques to develop a multiprocessor architecture

appropriate for application to a URV system. This research

will allow low cost flight testing of concepts which

heretofore required high cost/high risk flight tests on

expensive manned systems. To meet the goal, a first phase

effort has been performed to develop and demonstrate a

multiprocessor system suitable for use on the proposed URV.

This system is a prototype, not the actual flight-worthy

system. Not all aspects of the final URV avionics system

have been designed and implemented. This work was focused on

the main "computing engine" of the multiprocessor system and

its associated operating system software. This focused,

multiphase design strategy was taken to provide short term,

low cost results with limited manpower. As such, development

time, cost, and use of available laboratory resources were

important drivers.

The prototype multiprocessor system has been developed

and demonstrated incorporating near-state-of-the-art
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microprocessors, coprocessors, and interconnect

technologies. A real time multiprocessor/multitasking

operating system (RTMOS) has been designed and implemented

to coordinate the parallel tasks and data exchanges. To

demonstrate the capabilities of the prototype, a set of

applications tasks, implementing a control mixer algorithm

for failed control surface reconfiguration, was developed.

To begin the description of the development of the

research and prototype, Chapter 2 gives a background

discussion of the related URV and Continuously Reconfiguring

Multi-Microprocessor Flight Control System (CRMMFCS)

programs. Chapter 3 covers the requirements driving the

design of the multiprocessor system. Chapters 4 and 5

discuss the hardware and software design decisions

respectively. Chapter 6 addresses the approach taken to

develop and test the laboratory prototype. Chapter 7

concludes the technical discussion with prototype

performance and demonstration results.

10
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(2) Background

For several years, the Control Systems DeveLopment

Branch (AFWAL/FIGL) of the Air Force Fl.iqht Dynamics

Laboratory's Flight Control Division has been performing

research utilizing Unmanned Research Vehicles (URV). Usinc

an automotive emissions and fuel economy processor, the

Intel/Ford 8061, the URV in-house program has developed

low cost digital autopilot which has provided significant

size, weight, and power savings over its predecessor system.

- The extensive input/output (I/O) capabilities of the 8061

make it ideal as a "single chip" controller in such

applications (10,11]. Included in these capabilities are

thirteen analog-to-digital (A/D) conversion irruts, eight

high speed inputs, and ten high speed outputs which can be

used for pulse width modulated signals.

The URV has progressed to its current state as a low

cost/risk in-house flight testbed for research projects at

the Flight Dynamics Laboratory. However, due to the limited

computational capabilities of the single 16 bit processor of

the 8061, many new proposed tests must be run on a more

powerful ground-based computer system, with control commands

uplinked to the URV via its telemetry system. This process

suffers from several limitations, the most critical being

the relatively slow uplink transmission speed.

In its role as a low cost/risk flight testbed, the URV

has been very successful. The capabilities of the URV

system, however, must expand to neet its potential

9%..
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applications if it is to continue to serve as a useful in-

house research tool. The current airframe, originally

designed as a drone with specific mission requirements, is

limited in performance and adaptability. The airframe is

relatively heavy, causing a high stall speed. The bulkhead

is such that payload and electronics space is extremely

limited. The use of the 8061 allows digital autopilot

capabilities to be placed in the small space available, but

no expandability exists to allow for growth into more

advanced embedded tests.

To correct these shortcomings, a new URV testbed system

(TN21) has been initiated (Figure 2.1). The design will

incorporate a modular airframe structure that will allow

different configurations, such as varying wing sizes, to be

implemented around the baseline design. The aircraft will be

made of lighter materials and will make better use of space

to create less wing loading and greater maneuverability. The

design will also create a significantly larger payload bay

which can support more electronics and cargo. New control

surfaces and an overall improved aerodynamic design will

allow for a wider range of applications to be flight tested

on the URV. In short, TN21 will be designed from the onset

to be a flexible tool for low cost, high payoff flight

tests.

In order to make the best use of the performance and

flexibility capabilities of TN21, an avionics system with

greater capabilities than the current autopilot is required.

The increased space for embedded electronics has opened the

possibility of an advanced, yet low cost, control system

utilizing multiple microprocessors and expanded memory. The

0
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system should not only be able to handle the real time

response needs of advanced control laws and the changing

characteristics of a flexible and reconfigurable airframe,

but must also be applicable to a wide variety of test

problems. Already a wide spectrum of potential applications

exists. Among these are control law reconfiguration around

failed surfaces, fault tolerant hardware and software

techniques, artificial intelligence, and the application of

High Order Languages (HOL) such as ADA to real time control.

AFWAL/FIGL has accumulated the background knowledge and

experience necessary for the development of such a system.

Concurrent with the URV development work, AFWAL/FIGL has

conducted research in the areas of microprocessor-based

multiprocessor systems and parallel processing as applied to

flight control and vehicle management systems. The

Continuously Reconfiguring Multi-Microprocessor Flight

Control System (CRMMFCS) in-house project (1980-83) produced

several unique concepts in fault tolerance and parallel

processing and a successful laboratory demonstration system

[4]. This program has since spawned further research into

microprocessor applications in flight control and related

areas, including the current Advanced Multiprocessor Control

Architecture Definition (AMCAD) in-house project (5]. These

programs laid the groundwork for this thesis research by

providing valuable hands-on experience in the design,

development, troubleshooting, and programming of

multiprocessor laboratory systems kising microprocessor

emulation systems, logic analyzers, and support software.

Lessons learned during these other development efforts have
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been applied to allow effective integration of the

technology area to a low cost research testbed vehicle.

I



(3) Design Considerations of a Multiprocessor URV Avionics

System

Because of the wide range of potential applications of

such a URV system, a quantifiable performance measure of the

avionics system is difficult to pinpoint as a baseline.

Almost none of the tests identified in the previous chapter

have been formalized into planned tests to this point. From

this, flexibility appears to be the critical design goal. A

multiple processor configuration is desired, but the number

required is a function of individual processor capability,

communications throughtput, and applications computation

requirements. Without the last, the best design is the one

that allows for minimal multiprocessor configurations with

growth potential to meet needs.

Size, weight, and power often drive the limits of

growth potential. For the TN21 system, however, these

aspects have minimal impact. The available electronics space

has been approximated at 9 inches by 34 inches by 11 inches.

Current microprocessor, memory, and interface logic

densities allow considerable computing power to be included

in the available space. The on-board power system will be

able to supply more than 50 amps at 24 volts, and again,

current device technology allows operation well below this

constraint. A design constraint for weight is currently

unavailable. However, all indications are that the weight of

electronics and packaging filling the available space will

be within the limits of the aerodynamic design.

9
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The input and output (I/O) requirements perceived for

TN21 do not increase significantly over those of existing

URV. Although the figures will vary due to changing

configurations, the baseline requirement is 8 analog sensors

and 10 pulse width modulation driven servos. The 8061

processor used in the previous URV system contains

internally the capabilities to handle the I/O requirements

of the new system. As will be addressed further in the next

chapter, the problem with using the 8061 as the processor

type for the multiprocessor is its lack of general purpose

applicability. Without floating point support, operating

system aiding instructions, and a conventional memory

interface, the 8061 lacks the capabilities to make it a

flexible computation base in a multiprocessor environment.

Reliability and safety are concerns in a design such as

this. In manned systems, fault tolerance is required to

ensure safety of flight and to avoid the loss of expensive

systems. The URV is a unique flight test bed in that the

airframe and equipment are relatively inexpensive. The

aircraft are flown in controlled areas where risk is

minimized. A full suite of fault tolerance mechanisms,

including the capability to maintain testing after computing

resources fail, is an overly optimistic, if not self

defeating, design goal. The inclusion of a complete set of

fault tolerance mechanisms would only serve to drain

available resources and drive the design and utilization

costs to an unacceptable level. Still, the use of more

complex, multiprocessor configurations creates a greater

chance of individual component failure. As with the previous

URV system, the answer lies in a fail safe mechanism which
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allows the pilot of the vehicle to regain direct control of

the vehicle in an unassisted mode of operation or degrade

the aircraft control to a slow, circling return to the

ground. As such, the design criteria allows for a means to

bypass the multiprocessor system upon detection, by the

system or pilot, of a failure in the control system.

In summary, the multiprocessor system should be

flexible to meet changing airframe and test configurations,

utilize processors of general purpose applicability, and

implement only a minimal set of fault tolerance

capabilities. Most importantly, however, the system must

provide efficient, high speed computing at a low overall

system development and maintenence cost. By meeting these

requirements, the multiprocessor avionics system will

support the goals of the new URV research testbed.

I
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(4) Overall Goals to Architecture Specification

The three basic areas comprising the avionics system

can be categorized as computation, interprocessor

communications, and I/O. This statement is not to imply that

the three areas need be distinct; in fact, in some

implementations quite a bit of overlap exists. In this

design, however, the areas are best handled separately. The

following sections describe the specification of the three

areas and the resulting TN21 multiprocessor configuration.

(4.1) Computation Area

The use of the URV as a general test-bed for low

cost/risk flight testing dictates the use of a homogeneous

set of processors of a type that can handle a wide variety

of jobs. The baseline requirement includes capabilities to

handle real time operating system functions, 16 or 32 bit

integer processing, floating point operations, logical bit

manipulations, and a variety of memory addressing modes.

These are not difficult criteria to meet; in fact several

current, readily accessable microprocessors exist which

contain the above capabilities. Examples include the

Motorola 68000 family, the Intel 8086/286/386 family, the

National 32x32 family, and the Zilog Z8000/Z80000 family. To

complicate matters, none of the acceptable microprocessor

families has a clear technologicial advantage over the

others as applied to the wide range of applications. The

8061, however, does not meet the stated goals. The chip was

12
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designed for microcontroller applications, not for general

purpose computing.

As a result, the processor of choice was picked due to

the development support available in the Microprocessor

Laboratory at AFWAL/FIGL. This facility utilizes MC68000 in-

circuit emulators and logic analysis capabilities in a

variety of programs and has assemblers for the development

of MC68000 code. The use of these capabilities eases the

development cycle and results in a more reliable designs

which take less time to develop. The choice of the MC68000,

therefore, provides the required capabilities while allowing

for low cost development.

(4.2) Interprocessor Communications Area
Many schemes have been developed or proposed for the

interconnection of multiprocessors [7,8,9]. These range from

a simple, single bus to a complex, multiple interconnection

network. Figure 4.1 shows some of the possibilities.

Intuitively, the development of a system for a URV would not

include a complex, difficult to develop and test,

interconnection scheme. In fact, the wide availability of

commercial busses and parts leads to the choice of a bus.

Two questions must first be addressed before finalizing this

choice.

The reliability of a single thread bus can be seen as a

potential problem. However, as addressed in the previous

chapter, multiple redundant channels of communication,

providing a fault tolerant capability, are not required in

this URV system. Although a commercial bus with multiple

processors attached is more likely to fail than the single
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processor URV system of before, a fail-sate m' ' r,:" '-

around the multiprocessor "network" cai. provHe the

reliability required.

A more troubling question involves a common conceri in

single bus multiprocessor systems: transfer bottlenecks. It

is commonly accepted that a practical limit exists on the

number of processors attached to a single bus. Bevond this

limit, the addition of more processors degrzdes. rither thal

improves, system performance by forcinq more resource

sharing. Even before this limit is reached, degradation of

added processor power can be significant. Figure 4.2 shows

a realistic graph of processor numbers versus effective

processing power. Note that the ideal limit i: a linear

increase in processing power with increased numbers of

processors. This situation is not reached in practice for a

variety of reasons; the overhead of achieving parallel

interactions being a major cause. The result is a reduction

in the added percentage of processor power as more

processors are included in the system. However, if the

number of processors attached to a single bus is kept low

enough and the speed of the bus is sufficient, a single bus

can be used to support multiple processors. Ideal

parallelism may not be achievable, but effective qains in

computing power can be realized.

Given the sizing limits from the previous chapter, six

to eight processors appear to be the practical upper end for

the number of processors to be used. This limit would appear

to be sufficient for all forseeable URV embedded

applications. Keeping the granularity of computation to a
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coarse grained level with transfers kept to a minimum, six

to eight processors can be used practically in the URV

system with a single bus interconnect.

As with the choice of processors, there are multiple,

readily available options for parallel busses (Figure 4.3).

None of these options is unworkable with the MC68000.

However, the VME bus is the most compatible, being developed

by Motorola with a protocol almost identical to the MC68000.

Also, far more available components based on the MC68000

exist for the VME bus than there are for any other parallel

bus. The VME bus meets the requirement for high speed
0

transfer with a near state-of-the-art 40 Mbytes per second

peak transfer rate [12]. The bus specification also includes

features of access fairness and interprocessor interrupts.

The asynchronous transfer protocol allows the addition of

components which operate at different speeds than the bus

itself. This feature can be useful in an environment where

flexibility is desirable. Also, industry acceptance of the

bus has led to wide availability of parts, boards, and

assemblies. Of the other bus options available, only

Multibus II appears to have the wide industry acceptance,

capability, and availability of components of the VME bus.

Comparisons of the two busses in industry publications

[12,13,14] have produced no clear advantages for either. As

such, the choice of processor led to the choice of the VME

bus for the URV multiprocessor prototype.

(4.3) I/O Area

The introduction to this chapter described the I/O

I001
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section as a separate, distinct unit. I/O capabilities could

be merged into the processing modules of the multiprocessor,

but this is not practical from a number of standpoints.

First, connection of all I/O devices (sensors, actuators) to

all processors (Figure 4.4) becomes cumbersome, and

expandability is quickly inhibited. Dedicating certain I/O

devices to certain processors limits the flexibility of

processor utilization. This configuration cduld also hinder

expandability and the programmability of the system. Also,

the inclusion of I/O capability, such as analog-to-digital

>converters, would severely complicate the processing module

hardware; creating more hardware for no corresponding gain

in processing capability. Usage of the 8061 could solve this

problem; however, as stated previously, the 8061 is

basically unsuitable as the computation area processor-type

for the multiprocessor system.

A more acceptable solution is to separate the I/O area

from the main computational area. Although the 8061 is not

- suitable for a multiprocessor environment, interface to the

VME bus is still possible. The solution, therefore, is to

connect all I/O to an 8061 module (or multiple modules if

needed) and program the 8061 to supply the multiprocessor

system with digital inputs through the VME bus. Outputs from

the system can then be sent back along the bus to the 8061

for pulse width modulated output to the servo actuators.

4 One byproduct of this choice is that it provides a

possible solution to the fail safe operation considerations

discussed above. If provided with a "bare-bones" autopilot

function in reserve, the 8061 can be commanded by the pilot
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to take control of the aircraft in the event of a failure in

the multiprocessor section. In this scenario, all tests

would be terminated and the vehicle would be returned to the

ground safely. This mode provides a reliability no worse

than that of the current autopilot.

(4.4) Resulting Configuration and Hardware Selection

The resulting hardware configuration is shown in Figure

4.5. As noted in Chapter 1, the main design drivers for the

prototype were development time and cost. These drivers

dictate the use of available parts where possible. The

*decision made was to purchase as much of the hardware

preassembled as possible to limit debugging time. MC68000

processor boards with VME interface were purchased [15].

These boards contain 512 Kbytes of zero wait state dual

ported dynamic RAM accessable from the VME interface as

well as the MC68000 resident on the board. The boards also

include 128 Kbytes of EPROM and an interface connector

through which a wire-wrap board can be attached for hardware

expansion. A VME backplane, rack assembly, and power supply

were also purchased.

The dual ported RAM sections on each board provide the

means for interprocessor communication. Since each section

can be set up to be addressed in a different memory range on

the VME bus, the concatenation of the sections creates a

5 distributed version of a shared memory. Figurr -.6 shows the

logical view of the VME addressable memory area.

The selection of boards utilizing this communications

technique was not arbitrary. Experience with multiprocessor

6IC
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system software at AFWAL/FIGL has indicated that shared

memory techniques represent a simpler view to the programmer

and provide the same with more flexibility than message

passing (or point to point) techniques. One example of the

flexibility possible is the capability for an any-task-on-

any-processor programming model. This capability allows the

programmer to design the paral'el software without specific

details of the architecture, such as the number of processor

modules. Chapter 5 will address this shared memory

capability. If required, however, a message passing logical

view can be set up over a physical shared memory design

through the use of mailboxes or other similar data

structures.

0 S&% %ZrP .R S 6



(5) Software Specification

The software for the TN21 avionics system intersects

with two often distinct areas of software development: real

time control and multiple processor operating systems. The

commercial market contains skeletal real time operating

system kernels which are usually designed to operate on a

single processor. Development of multiprocessor operating

systems are often taken with more concern towards keeping

processing elements busy with some portion of the task

loading and coordinating exchanges of messages than towards

the rapid response to asynchronous events or the strict

periodic sample/compute/output cycle of real time control.

The software development of the URV multiprocessor system

has been focused towards applying real time operating system

techniques in the environment of a multiprocessor system.

(5.1) Techniques of Multiprocessor Software

Multiprocessor software can be viewed in many ways. In

the simplest case, each processor can be given a distinct

job to perform, with little or no interaction with the other

processors of the system. Each processor's job is a

separately specified and developed piece of software code.

An example of this is a multiprocessor system supporting

batch processing of user programs. Each program submitted

can be allocated to a separate processor. This method is

dependant upon separate, independant threads of computation,

and often results in inefficient use of processing

r 25
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resources. Some processors are idle, waiting for work, while

others are busy performing jobs which conceivably could be

subdivided.

From this simple case, many extensions are possible.

One example is the static assignment of multiple,

sequentially ordered jobs per processor. Instead of having

each processor perform a single, complete job, each now may

participate in multiple threads of computation by executing

subsets of these threads. This brings the interactions

closer to true parallel processing and allows for more even

processing load distribution. The interactions of the

processors are still preplanned according to the job

scheduling. Execution of program sections is totally

determined before run-time, forcing the programmer to be the

4'. scheduler. Code execution time is another consideration the

programmer has to be concerned with, so that exchange

windows can be met. Although efficiency of processor

utilization is made better, coding is much more difficult.

Single processor multitasking operating systems can

provide the basis for another option. These have been used

extensively for real time control and can provide for the

efficient and timely scheduling of jobs. The question is how

to extend this type of model to multiple processor systems.

Two methods used are either to utilize a single queue

of tasks or a single task resource manager from which the

jobs can be obtained. The latter case can be considered a

I form of master/slave processing, where one processor of the

system is dedicated as a distributer of tasks to the other

processors. The former case requires a shared memory with

mechanisms for insuring uninterrupted access by processors
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to the queue during task acquisition. Neither of these cases

really follows directly, in implementation, from the single

processor multitasking model.

If each processor is given its own queue of tasks to

perform, the single processor model can be used. The

question to address is how tasks are distributed to the

individual queues. The assignment may be static and

determined during programming, or dynamic and changeable

during execution. Also, given that the tasks may not be

prescheduled for exchanges, how are interactions

coordinated?
'U

* (5.2) Programmer Viewpoint: Tasks

,U' A task is a unit of software which may operate in

parallel with or sequentially in coordination with other

tasks. The code may be thought of in the same general terms

as a module or subroutine in conventional programming. A

multitasking operating system provides for the scheduling of

multiple tasks for the effective operation of the system.

Tasks are not often independent. They interact with

other tasks to acquire data, and to enforce cause and effect

relationships. The division of a problem into a set of

tasks, therefore, is similiar to the division of a

conventional program into a hierarchy of subroutines.

Software is organized into modules of logical relevance, and

their interfaces to, or interactions with, other modules are

3- specified. The difference with tasks is the additional

factor of time. Certain tasks can operate at the same time,

while others operate in some ordering defined by task

0-

. .J,. ,: ,,.., ., .. , .,,, . ,,....,.. >. ....



* 28

interactions. A mechanism to enforce data exchanges

according to the interaction specification is required.

The above discussion addresses the division of a

problem into tasks with interactions defined. The mapping of

tasks to processors was intentionally left out. If the

system is comprised of a set of homogeneous processing

modules, and if a shared memory architecture is used, a task

can be made to run on any processor. Interactions are made

to the shared memory, not to specifically addressed

processors. With these assumptions, the programmer can

design the tasks and interactions without any knowledge of

the number of processors or specific assignment of tasks to

processors. This any-task-on-any-processor scenario eases

the software development for the multiprocessor by allowing

the programmer to concentrate on the tasks and interactions

required, not the architecture used.

(5.3) Analysis of Available Real Time Operating Systems

(RTOS)

Given the desire to use off-the-shelf components where

appropriate, an analysis of existing RTOS's [16] was

required. Four packages developed for use in MC68000 systems

Awere chosen: VRTX from Ready Systems [17], MTOS68K from

- Industrial Programming Inc. [18], RMS68K from Motorola [19],
.4[ . and PSOS/PRISM from Software Components Group [20,21]. The

most interesting result of the study was that the user

interfaces in these packages vary little from one to

e Aanother. The main differences in the interfaces occur in the

communication and synchronization primatives. These

primatives will be discussed first, then discussion of the
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common functionalities will follow.

Three basic data structures are used. The semaphore is

probably the most studied and written about construct for

mutual exclusion and intertask synchronization. In its

simplest form, a semaphore is a "flag" on which two

operations can be performed. The "P"' operation will allow

processing to proceed if the flag is in the "pass" state,

but "stops" processing otherwise. The semaphore can be used

to protect a resource, or insure mutual exclusion. One task

sets the flag and proceeds to use the resource. Another task

which attempts the "P" operation after this point will

encounter the "stop" state, and as such, is prevented from

proceeding in using the resource. When the task is done with

the resource, the second operation, "V", is used to set the

flag back to the "pass" state so that a waiting task can use

the resource. Other variants of semaphores exist, including

counting semaphores which are used to manage multiple

resources. [22,23] provide more complete descriptions of

semaphores and their variants.

Event flags are groups of simple flags. Each flag

signals whether a particular event has or has not occured.

Processes can wait on event flags much like for semaphores,

although operations such as ''P' and ''V" above are not

defined specifically for them. What characterizes event

flags is the ab lity to combine waiting on multiple event

flags simultaneously with "AND" and "OR" operations.

Mailboxes are a higher level construct. Although

providing a wait-on capability like for the structures

above, mailboxes also provide an inherent means to pass

V



i3
L30

S. data. A "post" operation to a mailbox is similar to the

semaphore's "V" operation, except that a pointer (or init of

data) is stored as a part of the operation. A "pend"

operation corresponds to the "P" operation, with the

addition of receiving the previously stored pointer (or

data).

PSOS and MTOS utilize all of the above constructs; and,

as such, provide the most flexibility to the user. VRTX only

provides support for mailboxes. The argument given for this

is that the functionality of event flags and semaphores can

be emulated with mailboxes [24]. The use of a single

structure prtvides a common interface to the programmer.

RMS68K only supports semaphores.

Most of the user interface functions are common to all

of the above packages; the specific operations on the data

structures above being the primary exception. Typical

functions include task creation, deletion, suspension, and

resumption; memory management; get and set system time; and

modify task priority. All use basically the same task state

model and utilize a real time clock or counter which is

accessable by the user.

The most important characteristic for this study,

however, is the support for multiple processors. RMS68K, as

described in the literature, does not address this

capability. VRTX does not support multiprocessors directly;

however, Ready Systems does describe a way to utilize their

single processor product on multiple processors with shared

memory and interprocessor interrupts [25]. MTOS supports

multiprocessors, but the method is for systems utilizing

shared memory in a "tightly coupled" fashion. The multiple

1%
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processors acquire their tasks from a single (central)

queue. Software Components Group uses a modular, building

block approach to their package. PSOS is the multitasking

kernel located on each processor in the system. An

additional package, PRISM, is added to provide

multiprocessor capability. Like MTOS, PRISM requires a bus

based architecture and shared memory. Interprocessor

interrupts are desired, however, polling can be used if they

are unavailable. Tasks communicate by "datagrams" which are

queued up in each processor. Tasks need to have knowledge of

the destination task's processor identification number. This

requirement is actually transparent to the application

programmer through the use of a "global name server" which

converts a logical "name" to physical address, however, it

appears that the "server" must be updated when tasks are

assigned to processors.

(5.4) Analysis of the Multiprocessor/Multitasking Problem in

the Control Environment

(5.4.1) The Multiple Processor Problem

Of the above, PSOS/PRISM and VRTX appear to correspond

the best to the model required. Interestingly, both sets of

literature indicate that two techniques are possible to

accomplish the multiple processor communication and

synchronization: interprocessor interrupt and polling

[21,25]. To explain the need for either of these techniques,

consider the following scenario. A task on processor n is

waiting for data from another task. Let us assume that this



* 32

task is resident on another processor m. If each processor

has its own set of task queues and the task on processor n

waits for the data (either by going to a wait queue or

polling), how does the task on processor m signal to the

other task that the data is ready? This situation is

complicated further if the task on n is put to "sleep"

waiting for the data, allowing another task to use the

processor. In the single processor multitasking model, the

process is accomplished via an operation, such as "V" above,

that will free the waiting task from the wait queue once the

data is available. Across multiple processors, however, one

processor should not have access (modification rights) to

another's task queues. Some sort of signal, such as an

interrupt, is required for one local kernel to indicate to

another that this operation needs to be performed and which

task is to be signalled.

Interprocessor interrupts provide the most direct way

to accomplish this. An interrupt service routine on each

processor can be set up to act much like a local "V"

operation. Limitations exist, however. The interrupt scheme

in hardware must be any-to-any in order to support the any-

task-on-any-processor scenerio. Also, knowledge of a

"consumer" task's processor must be available in order to

activate the proper interrupt. Interrupting all processors

in a broadcast manner is wasteful and inefficient. The

knowledge that is required does not preclude the desire for

any-task-on-any-processor, but does create a need for a

method to tag tasks with a processor identification number

when they are activated on that processor, and to make this

available as part of the communications/waitinc process.

0 N
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Polling, as the alternative to interrupts, is often

discarded quickly as being inefficient. A task that is

waiting for data, and stays on the processor or ready task

*queue while waiting for a data available indication, would

appear to waste precious processor time busy waiting. Also,

the context switch time in repeatedly bring a polling task

onto a processor, then removing it when the data is

unavailable, can be significant. In short, the disadvantages

involve multiple passes through the processor while polling,

each with a costly context switch time. The advantages

include a much simpler means of implementing the any-task-

on-any-processor scenerio, without any regard for processor

identification.

The two methods above assume a coordinated transfer of

data between tasks. Prescheduled tasks with timed transfers,

as discussed earilier in this chapter, is an example of an

exchange technique without coordination, or handshaking.

This technique requires much programmer precompilation

knowledge of execution time and task/processor placement.

(5.4.2) Intertask Communications

Several levels of coordinated transfers can be used.

The simplest case involves a basic flag which signals when

data is ready. This unilateral rendezvous [24] has only the

consumer of the data wait in the exchange. Producers can

update at any time and do not wait for the consumer to

respond. Bilateral rendezvous involve both producers and

consumers waiting until both are ready. The bilateral

transfer provides the most reliable exchange since it is
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assumed that both sides of the transfer are active and meet

during the same time window. Unilateral transfers require

much less overhead to effect the exchange.

(5.4.3) Control Timing

Digital real time control systems usually are

characterized by two types of processing: interrupt driven,

asynchronous response to external events and/or periodic

sample/compute/output sequences. The latter case is of

primary concern in the case of the URV system. The resultant

requirement is for a means to schedule tasks on a strict

periodic basis. Two methods have been identified to handle

this situation. The assumptions made from the previous

discussions are that tasks are coordinated in a rendezvous-

like fashion and that a separate I/O section exists to

provide the tasks with input data and to take task outputs

to convert to servo actuator signals.

In the first case, tasks can be ordered in a dataflow-

like manner in which the output of one task is required

before another can start. The processing of a task,

therefore, is characterized by one or more sequences of:

receive inputs, compute, send outputs. The I/O section can

be programmed to handle interrupts or loop in a timed manner

to sample data. The I/O section then makes a rendezvous with

the first computational section task (or set of tasks) in

the control law computations. This task then "fires" other

tasks, and so on. When the tasks complete, they go into a

wait loop, awaiting the next rendezvous to start again.

An obvious problem with this case is that tasks are

spending precious processor time waiting for a rendezvous (a

,
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polling type of situation) in order to start the next

computation. A better method is to utilize a special wait

queue to hold tasks for a specified period of time. This

method requires a timer or counter function to be available

in the kernel. The kernel monitors the queue and the timer

to determine when tasks are to be removed. Task periodicity

is then accomplished by placing the tasks on the queue once

their computation is complete. Once there, they are

suspended for a specified period of time (the period of

control computation) until the kernel removes them. The

dataflow-type rendezvous method of the first case can then

be used to insure proper task sequencing.

0

(5.5) URV Real Time Multiprocessor/multitasking Operating

System (RTMOS) Kernel Specification

Although PSOS and VRTX may have been suitable for use

in the URV multiprocessor system, several factors led to the

decision to design and develop a multitasking kernel instead

of purchasing one. Cost was one such factor. [16] gives

typical price information. Note that source code, far more

costly than object code, is required if modifications are

needed. The most critical factors were the learning curve

and porting-to-target times. Unlike an off-the-shelf

processor board, a commercial RTOS is not usable when it

arrives. The software must be ported to the target processor

system by providing the software "hooks" between the

provided code and target resources, such as RAM and timers.

The ccde may also require transfer to new ROM chips to

accomodate the target board design. The time taken to port
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the new code and learn how to interface to it is

significant; much more than setting up an off-the-shelf

processor board. Because of these factors, a short study

investigated those features needed in the URV kernel. The

results of the study were that the functions required were

fewer in number than commercial RTOS's and not difficult to

implement, and that an in-house developed kernel would

provide the flexibility and ease of use required. Upon

development of the kernel features, as discussed below, a

further discovery was made that performance improvements

could be realized by tailoring the kernel to the application

and target hardware. The output of the resultant development

effort was the URV Real-Time Multiprocessor/multitasking

Operating System (RTMOS), a kernel which operates

a." identically on each processor in the system with the added

- capabilities of multiprocessor interactions and

synchronization.

A(5.5.1) Kernel Structures

This section describes the resultant kernel and

intertask communications specification for the URV RTMOS. To

begin, let us review the underlying hardware structure. The

computational section is comprised of a set of MC68000

processor boards interconnected by a VME backplane bus. The

basic means of interprocessor communication is shared memory

comprised of the uniquely addressable dual port memory

segments on each processor board. An interprocessor

interrupt capability is specified for VME and can be

implemented as any-to-any. However, the interrupt scheme

requires knowledge (processor number or address) of the

11 Jl
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destination of the signal. On each board is a resident

MC68681 DUART chip to be used for serial communication

between the processor board and an external terminal. This

chip also contains internal timers.

As discussed earier, the single processor multitasking

kernel model is used as a baseline. This means that each

processor has its own set of task queues. The queues are

loaded with some subset of the total set of tasks. Any task

can operate on any processor without modification or

precompilation knowledge of its own or any other task's

processor. This allows the set of tasks to operate on one or

any number of processors by simply loading the tasks queues

of each processor available with some subset.

In the single processor multitasking model, a task

4" ready queue is used to hold and order tasks awaiting

processor execution time. Priorities are generally

associated with tasks so that ordering of the queue will

reflect the relative importance or any time constraints of

the tasks needing processor time. The URV RTMOS kernel

builds upon this basic structure.

In addition to the ready queue, a timer queue is used.
This queue, described in the previous section, is used to

hold tasks for a specified period of time. The queue is

ordered by release time rather than by priority. This

ordering allows easy scanning for task release time since

the search proceeds only from the front entry to the first

which is not ready to be released.

The use of a timer queue requires a timer or clock

function to be implemented within the kernel. The DUART chip

4.)
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mentioned above allows for this to be added. The chip can be

programmed to interrupt the processor at periodic intervals.

In the URV RTMOS kernel, this interval was chosen to be one

millisecond so that control loop or task frequencies of up

to 1000 Hz can be implemented. The interrupt routine,

referred to as the tick function, updates a location in

memory as a counter. This location is used as a clock

relative to system start-up. All task timings are based upon

this clock.

A diagram of the queue structure of a single processor

is given in Figure 5.1.

(5.5.2) Task Data Exchanges and Context Switches

Task data exchanges are handled via a variant of a

unilateral rendezvous. The data structure used in the

exchange is based upon the mailbox concept described above.

The structure is comprised of four parts. The first part is

a simple semaphore which is used to ensure mutual exclusion

over the rest of the construct. The second part is a flag

which enforces the producer and consumer relationship of the

rendezvous. The third variable is a count of data words to

follow in the structure. As such, the data being passed in

the exchange comprises the fourth part.
N". Like the unilateral rendezvous described previously,

4.

. the URV RTMOS utilizes exchanges where only consumers of

aL data wait. Before waiting, a timeout clock value is recorded

K* so that the wait time is bounded. The difference from the

I %basic unilateral transfer comes in the use of the second

piece of the data structure, the producer/consumer flag.

I-A
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This flag has three states: producer's turn, consumer's

turn, and failed exchange. The first two states are self-

explainatory. The last is used in the event of a timeout or

some other failure event. If the consumer detects a timeout,

it can signal to the producer, through the flag, that data

was not received within the prescribed time window. In this

way, late producers or late consumers are detected and

transfers cease until corrective measures are taken to

"resynchronize" the tasks. This process will be addressed

later.

As mentioned previously, polling is often considered to

be an undesirable option in multitasking systems. The

reasons for this include costly context switching times and

"clogging" of the ready queue. Generally, a context switch

involves a switch to the executive (via a jump, subroutine

call, or software interrupt), a saving of the state of the

current running task (its context), the removal and storage

elsewhere of this task, and the acquisition of the next

ready task. This new task's state is then restored and

control transferred back to the user task mode of operation.

In terms of the MC68000, which of these components are the

most costly? Queue management, for simple queues such as

described above, does not require extensive processor time.

Mode changing and state saving/retrieving can, however. The

commercial packages described earlier change from user to

executive mode with a TRAP (or software interrupt)

instruction. The cost is in the partial storage of the

processor state taken by the MC68000 upon interrupt; and

this process is performed each time a system function is

%.
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called.

The task state storage/retrieval is the main concern in

context switches. The MC68000 has sixteen 32-bit internal

registers. Since the kernel has no means of determining

which registers the exiting task is using, it must save all

of them. This makes polling undesirable since one failed

polling attempt results in 32 words of data (minimum) to be

stored, then later retrieved.

Two flaws exist in the techniques described above.

First, a TRAP should not be performed each time a data

.exchange is to be made. The purpose for the TRAP is to force

the processing into the kernel for proper and hidden access

to RTMOS resources such as the task queues. Having the

kernel also preside over data exchanges forces unnecessary

overhead. Other options exist to hide data structure details

from the applications programmer. These will be discussed

later.

The other flaw is the storage/retrieval of all

registers each time a polling iteration occurs. The context

need only be stored and restored once. The task's registers

can be saved at the first failed poll and be retrieved only

p after the poll is successful. In between, the registers are

not used. Also, since the kernel is unable to determine on

its own which registers are being used, a less brute force

solution is to have the task specify the registers in use;

or better yet, make the task save its own registers. This

option is possible if a task's stack pointer ?oints to

within its own Process Control Block (PCB), a data structure

used by the kernel for task information storage and queue

linkage. Again, this process can be made transparent to the

i
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applications programmer without putting the burden, and the

overhead, into the kernel.

As can be seen from the discussion above, the

functionality of the kernel has been limited basically to

the management of the multitasking queues (ready,timer) and

the handling of interrupts. How do we keep the burden of

underlying communications data structures and polling from

the applications programmer without placing it within the

kernel.? In the case of the URV RTMOS, where assembly

language has been used in the initial stages of coie

development, macros are one possibility. Macros provide a

generic unit of code with "gaps" in which specific

instantiation information can be placed. In place of a

section of code which implements a polling sequence on a

particular data structure, a macro instruction can be used.

Parameters in the polling macro instruction specify the data

Ustructure name (label), the registers in use, and the source

or destination of exchange data. Macro instruction libraries

can be supplied to applications programmers as easily as

system functions implemented as TRAP's. In effect, macros

are similar to additional, higher level instructions

* provided for use by the applications programmer. In higher

order language implementations, special procedure calls can

be utilized for the same purpose.

To demonstrate, the macro instructions for the producer
0

and consumer polling will be discussed. First in algorithmic

form:

0

0%
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Producer Consumer

P(var(sem)] P(var(sem) ]
If var(P/C) <> C then Save registers
Report Error to System While (var(P/C)=C) and
var(P/C)=C (not timeout) do

Else V[var(sem)]
Put var(data) Wait
var(P/C)=P P[var(sem)]

End if End while
V[var(sem)] If var(P/C) P then

var(P/C) C
Else
var(P/C) F
Report Error to System

* End if
Get var(data)
Retrieve registers
V[var(sem)]

Note that the algorithms handle the mutual exclusion over
00- the data structure, the storage/retrieval of specified

registers, the checking/updating of the producer/consumer

Aflag, the monitoring of exchange timeouts, and the transfer

of data to and from the exchange data structure. Only the

"Wait" operation is an actual call to the kernel. The rest

of the algorithm is actually performed in user

(applications) mode, but is hidden in source code from the

applications programmer by the use of macro instructions.

This programmer would implement a consumer poll with the

macro instruction c.poll such as in the following example:

c.poll tasklink,do-d3/a5,mydata

where tasklink = exchange data structure
dO-d3/a5 = specifies that dO,dl,d2,d3,a5 are

to be saved
mydata = destination of data from exchange

kid The source code to c.poll and the corresponding p.poll macro

* are included in Appendix (Al).

U-
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The question remains on whether polling is a viable

option. Context switch times have been reduced (as will be

discussed in a later chapter). Kernel calls have been

reduced in number and have been made simpler. The

implementation of any-task-on-any-processor is also

simplified. Still, the potential problem of polling numerous

times before succeeding is troublesome. The answer may lie

in the proper use of the timer queue.

The situation to avoid when polling is to have a

consumer of data begin waiting much before the producer is

able to have it available. In other words, the desire is for

a means to appropriately "order" producers and consumers.

The extreme of having the applications programmer time

schedule tasks in advance has been previously discarded.

However, the ability exists to stagger the release times of

tasks from the timer queue such that tasks at the the

"front" of a thread of computation are released before those

at the "end". This staggering need not be precise; in fact,

the indeterminacy of the queues' orderings makes this

extremely difficult, if not impossible. However, the desire

is only to reduce polling to one or a couple of tries. With

the timer queue described above, this situation does not

appear difficult to realize. Experience in actual usage is

required to demonstrate the practicality of polling with

timer queues.

Another feature has been built into the RTMOS to limit

the burden on the applications programmer. To prevent the

programmer from having to design in points to release the

processor to other tasks in order to create fairness,

processor time slicing was added. This feature will

II
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automatically switch out tasks which hold a processor for an

extended period of time. In this way, long running tasks,

such as those with multiple nested loops, can be run without

"starving" other tasks on the processor. Not all tasks or

sections of code within tasks should be time sliced,

however. An example is the polling macros above. If sliced

during one of these macros, a task will hold "ownership" of

the semaphore, and likewise the variable, while the task is

reawaiting processor time in the ready queue. To prevent

this and other similar situations, each task PCB contains a

time slice inhibit flag. System functions which turn on and

turn off the time slicing priviledge are used around

sections of code where a slice can cause problems to occur.

For example, these functions have been incorporated into the

macro instructions previously described. The flag can also

be put in the inhibit state at initialization and left

untouched. This feature permits an "unsliceable" task.

The resulting user interface to the kernel is comprised

of seven system calls: release (or exit), release-on-poll,

sleep, terminate, report-to-system, slice-on, and slice-off.

Release and release-on-poll cause the current running task

to be removed from the processor and placed at the end of

the ready queue. The next ready task is then assigned the

processor. In release-on-poll, additional functions are

performed particular to a polling task. Sleep does the same

as release except that the previously running task is placed

into the timer queue rather than the ready queue.

queue; as a result, the task effectively "dies" rather than

Temnt osntpaetepeiu ako n
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is suspended, where reactivation is assumed. This function

is used for nonrecurring tasks which are started up at

initialization or by the RTMOS at certain times for single

run operation. One case where this may occur is when a task

makes a report-to-system system call. The report-to-system

call is used to report error conditions, such as timeouts,

to the RTMOS so that corrective measures can be taken. An

example of a single run task which may be started upon a

report of timeout is one which will sample the individual

clocks of each processor of the system to detect any

significant disagreement. This task may in turn report the

findings to the system for further corrective actions.

The overall structure of the kernel has now been

presented. A corresponding task state transition diagram is

given in Figure 5.2. Note that the states of the URV RTMOS

tasks resemble those available in the commercial packages

% dsurveyed above.

One final topic in the context of the kernel merits

discussion. Task code is static, ROMable, and reentrant. To

activate a task or instantiate multiple copies of a task,

task PCB's are used. These structures form the run-time

representation of tasks. A task PCB contains a task's

context when it is not running, its stack, queue linkage

pointers, status flags, timeout information, and a pointer

to the task code. To activate a task, a PCB is loaded with

the appropriate initial task data and linked to the

appropriate queue. To activate multiple tasks, multiple
PCB's pointing to the same task code unit are created. Task

code is either structured in an infinite loop, or contains a

terminate kernel call. Appropriate processor release calls

-
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are either programmed in; or time slicing is enabled,

allowing the kernel to automatically remove the task at

periodic intervals. Examples of tasks can be found in the

source code listing in Appendix (A3). Their associated PCB's

are given with the source code for RTMOS in Appendix (A2).

(5.6) Remaining RTMOS Features

The kernel is just one part of the URV RTMOS. Figure

5.3 shows a layered representation of the RTMOS, its

features, and its relationship to applications tasks. The

only part of the RTMOS not addressed to this point is the

system tasks which it employs. System tasks are different

than applications tasks in that they are basically a part of

the RTMOS, are always resident in each processor, and may

have knowledge of their own processor. The reason why these

are discussed last is that only a couple of system tasks

have been designed and used in the URV multiprocessor

avionics prototype. The first system task reports system

errors to a terminal for diagnostic purposes. This task is

initiated by the report-to-system system call. Because of

the simplistic nature of the task, it will not be discussed

"* in further detail.

Another system task implemented in the prototype

provides an important interprocessor synchronization

function. Without this capability, the individual processor

clocks can skew. Since these clocks determine task release

times from timer queues, skewing can create

producer/consumer timing problems, including exchange

* timeouts. To prevent this, a periodic system task is
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assigned to each processor to resynchronize the clocks of

the system. For the purposes of the prototype, a simple

algorithm is used. In this algorithm, each processor

(actually the synchronization task operating on the

processor) waits until all processors report to a table in

shared memory, at which time the clocks are set identically.

All of these synchronization tasks have the same timer queue

release times and are the first tasks in each processor to

be performed. If the tasks are scheduled appropriately,

skewing will be controlled by reorienting the clocks at

periodic intervals.

As is often the case, the simple solution is not the

best. The above algorithm has a weakness in that the

operation of the system is delayed until synchronization is

completed. Also, the above algorithm does not account for

the possibility of failed processors; a situation which will

deadlock the system. A better algorithm would have each

processor maintain its clock value or a copy of its clock

value in its own section of the distributed shared memory.

Resynchronizing a processor's clock would be the job of that

processor alone, with no interaction with or waiting for

another processor. The resynchronization would involve

looking at all the clocks and resetting the local clock

according to a consensus algorithm. This method is more

complicated than it at first seems. More work remains in

this area, however. The original algorithm given has

sufficed for the first phase prototype.

Other potential system tasks, not designed for this

0 first phase prototype, warrant discussion. The task

MI
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assignment for the current prototype is static; in other

words, at initialization, the tasks are assigned to

processors and loaded into queues. This assignment is never

changed throughout the runtime of the system. However, a

more practical scenerio would have the system configure the

task assignment according to available processing resources

and reconfigure the tasks in the event of a detected

failure. The processes of task assignment, failure

detection, and reconfiguration, therefore, comprise an

important part of the system task area. These tasks will be

discussed in the following paragraphs in terms of their

theory of operation. Other system tasks are possible, but

further work on the URV RTMOS is needed to determine the

requirements.

Task assignment can be carried out in many ways. One

technique which has been proven is the CRMMFCS system of

self- checks and volunteering [4]. Three basic steps are

involved. Upon notification of a task assignment cycle, a

task on each processor performs a brief self-check on its

processor. The second step involves reporting the results

(health status) to a table in the shared memory. The third

step, which takes place after a suitable delay to let all

processors report, has a task check the status of the table,

count the number of healthy processors, and choose a set of

tasks. Various acceptable techniques exist for this last

* step; as such, no further discussion is required.

Failure detection tasks can take many forms also. Low

priority self-checks can be used for "background" built-in-

test. The clock checking task put into the system upon

timeout (described previously) is another example. These

0%
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self-check tasks can be of single run type, timer queue

type, or low priority ready-queue-only type. The results of

the failure detection can result in a variety of responses.

The timeout task above could resynchronize the clocks if the

current clock value of each processor is kept in shared

memory. Perhaps a reconfiguration could be triggered by

interrupts or special command words monitored regularly by

the individual kernels.

Reconfiguration itself is a variant on the task

assignment task(s). Reconfiguration involves recognizing the

request, confirming the validity of the request, and

carrying out the request. This last step could be

accomplished with a task assignment cycle running concurrent

with the tasks still executing in the system. Of course,

these system tasks would be of higher priority than

applications tasks. Note that we may allow tasks currently

in the system to continue to execute during the

reconfiguration process. The tasks in the system at the time

of the reconfiguration, however, are marked such that they

are not reloaded into the system queues upon their release

of the processor (except for polling or time slice). In this

way, new tasks assigned can be loaded into the queues while

the "old" set is finishing to allow a smooth and

uninterrupted transition.

0%



(6) Laboratory Approach

As discussed in the previous chapters, the hardware

used in this initial development stage consists primarily of

off-the-shelf purchased items. Some modifications and

additions were made. These enhancements will be discussed in

this chapter. Similarly, the operating system and hardware

test software development began from off-the-shelf software.

A debugger monitor, written by the author for a previous

project, was used for initial hardware checkout and provided

the basis for early kernel testing. This software, as well

as the development of kernel itself, will be discussed in

this chapter. In addition, the applications tasks, I/O

software, and simulation set-up will be addressed.

(6.1) Processor Board

The four processor boards purchased required only minor

modifications. As discussed previously, each board's dual

port RAM can be addressed uniquely by requests over the VME

* bus. This required modifications to be made to the dual port

address decoder implemented in a Programmable Logic Array

(PLA) chip. Once this change was made, the shared memory

segments of the four boards were addressed beginning at

80000H, 100000H, 180000H, and E80000H.

To check out the boards, the above mentioned debugger

monitor was modified to match the new address map and

utilize the MC68681 DUART chip for character I/O. This

monitor software provides some basic commands such as dump

53
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memory, examine and modify memory, fill memory, display

registers, set breakpoints, and begin user program

execution. A RAM test command, however, was most important.

This command allowed the new decoding PLA's to be tested,

and provided a means to test remote VME bus accesses. Of

particular interest was a test of bus loading. This test was

performed with simultaneous RAM tests being executed across

the VME bus by multiple processors. The test provided a

measure of VME performance in a multiprocessor environment

in a near worst case loading situation. The results of this

test are given in Chapter 7.

To determine the DUART's capabilities to act as the

generator of the 'tick' function, a modification was made to

the monitor in the initial stages of testing. The DUART was

programmed to provide a once-per-millisecond interrupt via a

countdown timer. The interrupt routine increments a counter

in memory. Two commands were added to verify the operation

- of the routines. One gives the time in minutes and seconds

since monitor start-up and the other gives the raw counter

value.

(6.2) Kernel Development

The decision was made at the start of the software

development process to incrementally design and test the

functions and data structures of the kernel. First, the

* basic ready queue and queue access routines were developed.

Next, a set of test tasks and the requisite task

communication macros were added. This collection provided

the basis for the first multitasking tests. Whei, this staqe

was verfied, the timer queue and queue access rout ines were
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added and tested. This iterative process was followed until

all the features of the kernel were incorporated and tested.

After the verification of the kernel, the applications tasks

were designed and implemented.

The design of the kernel functions and data structures

was fairly straightforward. Typically, however, the testing

of such features can be a difficult and lengthy process. The

decision was made to develop test tasks which could visually

demonstrate the correct operation of the kernel. Concurrent

testing of tasks and the kernel was not desired. As such,

the debugger monitor discussed above was used as the basis

of test tasks for the kernel. The reasons are simple. The

individual commands of the monitor were previously verified

and, with little modification, were convertable to tasks.

Each of the commands chosen are user interactive or provide

visual evidence of operation.

In the initial task set, five commands were

implemented: dump memory, examine memory, fill memory, show

time, and show counter. To complete the set, the mainline

command interpreter, character input, and character output

routines were also converted to tasks. Character I/O was

handled by utilizing character input and output queues

protected by special kernel functions. Proper operation of

the ready queue and associated routines was demonstrated by

utilizing two processors; one with the command line

interpreter and I/O tasks, and the other with the monitor

command tasks and 1/' tasks. Multiple monitor commands, such

as dump and fill, were executed simultaneously, with results

visually demonstratc>A.

U
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To test the timer queue operations, command tasks were

set up to operate at specified periodic rates. For example,

the examine task was set up to execute once every thirty

seconds. Obviously, this could be checked by forcing the

initiation of a signal to the examine task data structure

(via p.poll) with the command line interpreter task. The

examine task, although signalled, did not respond until

released from the timer queue at the end of its thirty

second wait. Again, test results were visual.

Similarly, communications timeouts and time slicing

were verified using these tasks. Although not all kernel

problems were detected using these monitor tasks, most of

the complicated "bugs" in the data structure routines were

eliminated.

(6.3) Floating Point Hardware

Before the applications software could be designed and

tested, the addition of the floating point coprocessor,

MC68881, was required. This coprocessor was not included on

the purchased boa.As. The side connector on the processor

board, however, allowed for the addition of a wirewrap

extension board. A schematic of the added hardware circuits

is given in Appendix (A4).

The MC68881 was developed primarily to be used with the

MC68020 processor. The coprocessor, however, can be used as

a peripheral device for other microprocessors [26]. A simple

sequence of software instructions can be used to coordinate

transfers of commands and operands between the MC68000 and

MC68881 [27].

To test the developed wirewrap circuits, the

%0
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nonmultitasking version of the debugger monitor was again

used. Additional commands were added to perform transfers to

and from the coprocessor registers, floating point additions

and multiplications, and integer multiplications and

additions. A single coprocessor register was used as an

accumulator. Once these single operation routines verified

the operation of the coprocessor, the applications software

was designed and tested.

The MC68881 handles three types of floating point data

formats. Single precision is 32 bits wide (1 sign bit/8 bit

exponent/23 bit mantissa), double precision is 64 bits wide

* (1/11/52), and extended precision is 80 bits wide (1/15/64).

In all internal operations and registers of the coprocessor,

extended precision format is used. For the purposes of the

applications tasks to be discussed below, single precision

was determined to be sufficient. As such, all floating point

numbers stored in main memory or in MC68000 registers are

V kept as 32 bit single precision values. Format conversions

are performed automatically by the coprocessor during

operand transfers.

* (6.4) Applications Software Development

The application chosen to demonstrate the prototype

multiprocessor system was a control mixer for

* . reconfiguration of control laws of the URV in the event of

my. control surface failure. In short, this concept modifies the

ccntrol surface gain matrix to offset the effect of a failed

surface by distributing control authority to the other

* control surfaces of the aircraft. In effect, the remaining

04
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surfaces act to compensate for the loss. Much control and

mathematical theory has gone into this research; however,

the theory is outside the scope of this project. Interested

readers are directed to the references for more detailed

information.

As defined in [28], the linearized continuous aircraft

state equations of the unimpaired aircraft are given by

x(t) = A x(t) + Bo d(t)

where x(t) is the aircraft state vector, d(t) is the

aircraft control surface deflection vector, and Bo is the

control effectiveness matrix. Also,

d(t) = Ko u(t)

where u(t) is a pilot plus flight control system (FCS) input

vector and Ko is the control mixer gain matrix. Expanding

the above equation, we get

x(t) = A x(t) + Bo Ko u(t).

As will be discussed below, a failure changes the makeup of

Bo. In order to keep the aircraft model the same (ie:

tolerate the failure), the quantity (Bo Ko) must remain

constant. As a result, the Ko matrix must be adjusted to

offset the changes in Bo. If we use o subscripts to signify

matrices of the unimpaired aircraft, and i subscripts to

5! signify matrices of the impaired aircraft, we get

Bi Ki = Bo Ko.

Ii.-
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To solve for Ki

-1
Ki = Bi Bo Ko.

However, Bi may not be a square matrix, in which case it is

not invertable. As such, we use the fact that a matrix

multiplied by its transpose results in a square matrix. As

shown in [28],

L-1
. Ki = (Bi' Bi) Bi' Bo Ko. (6.1)

The derivation of this equation assumes that Bi is an m X n

matrix, where m (number of state equations) is greater than

n (number of control surfaces).

For the purposes of the applications functions of the

prototype test, Bo is a 5 X 5 matrix, where each column

corresponds to a control surface on the URV. It is assumed

that a control surface fails in the center and locked

position. As such, all entries in the column corresponding

to the failed surface go to zero. This resultant matrix is

Bi.

If Bi were left in this form, we would be unable to

compute Ki since the quantity Bi' Bi is singular, and,

therefore, is not invertable. As a result, we convert Bi

such that Bi' Bi becomes potentially nonsingular by removing

the zero column. This conversion leaves Bi as a 5 X 4

matrix. With Ko sized at 5 X 3, Ki computes into a 4 X 3

matrix. Note that each row of the Ki matrix corresponds to a

control surface of the aircraft. As such, a row of zeros can

be reinserted into the row corresponding to the lost

I0l
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surface. The resultant gain matrix, Ki is a 5 X 3 matrix

with the gains of the good control surfaces adjusted to

compensate for the loss of the failed surface. This

derivation can be extended to multiple failed surfaces.

For the demonstration of the prototype, the job to be

performed was the real time computation of the Ki matrix in

.response to failed surfaces. Previous tests on the TN17

aircraft were run using precomputed control mixer gain

matrices. The matrices were derived on the ground and placed

into the ROM memory. The 8061-based autopilot would simply

select the correct gain matrix given the failure induced.

Note that the "failure" is really a control panel switch

which signals to the autopilot which surface to "fail".

Real time computation of the control mixer gain matrix

is too intensive of a job for the 8061 to handle alone. As

such, the demonstration of the multiprocessor prototype has

been designed to compute Ki continuously on the basis of

failure information supplied by the 8061. For the purposes

of this demonstration, the basic autopilot functions have

been left in the 8061 processor. The Ki function in equation

(6.1) is broken into a set of tasks, much of which can be

run in parallel. These tasks are triggered by a preceding
0

task which samples the failure data supplied by the 8061.

The last task in the computation of Ki triggers a following

task which converts the computed matrix to the form used by

*the 8061 and stores it in dual port memory where the 8061

can access it. This real time computation is transparent to

the 8061 in that the 8061 simply uses the gain matrix

currently stored in memory. By keeping the autopilot
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function in the 8061, the demonstration of the prototype is

simplified. The modifications to the existing autopilot are

minor, and fewer 68000-based tasks are required. These

assumptions do not detract from the intent to demonstrate

the capabilities of the prototype.

(6.5) Test Configuration

Figure 6.1 gives the system test configuration used for

the demonstration of the multiprocessor prototype. One

aspect of the set-up requires special note. The 8061

processor hardware is connected to one of the MC68000

processors through dual ported RAM on the attached wirewrap

* board. This set-up is not the ultimate configuration of the

TN21 avionics system. As discussed in chapter 4, the 8061 in

the system will be interfaced through the VME bus. To

simplify the demonstration hardware, the 8061 section was

connected to one of the MC68000's to eliminate the need for

VME interface hardware to be developed. The dual port

interface, in contrast, is simplistic and makes for

effective demonstration of the concepts of the prototype.

The two extra tasks described above were assigned to the

MC68000 interfaced to the 8061 to make this deviation

somewhat transparent. A later phase of the development of

the TN21 system will include the implementation of the

proper interface and software.

(6.6) Parallelization of the Ki Function

To divide a function, such as equation (6.1), into

tasks for a multiprocessor, one must first identify the

*areas of potential parallelism and the areas of strict

0i A.O-
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serial dependancies. First, let us examine a sequential

algorithm for the computation of Ki.

(1) Take the transpose of Bi (= Bi')

(2) Multiply Bi' by Bi (=A)

(3) Take the inverse of A (=C)

(4) Multiply Bi' by Bo Ko (=D)

(5) Multiply C by D (=Ki)

Note that Bo Ko is a static entity, and as such can be

precomputed.

First analysis of the above algorithm showsG only one

area of parallelism. Step (4) is independant of steps (2)

and (3) and as such can be performed concurrently. Other

less apparent areas of parallelism exist if the steps of the

algorithm are defined in more detail. For example, step (3)

involves a matrix inversion which is comprised of many

substeps.

4A basic method for computing a matrix inverse is given

by

-1
A =adj A / det A

where det A is the determinant of A and adj A is the adjoint

adjoint of matrix A and is defined as

adj A = (cof A)'.

The cofactor of A, cof A, is defined as the matrix whose row
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i and column j entry is given by

i+j
cof A (i,j) = minor( A(i,j) ) * (-1).

The minor( A(i,j) ) is the determinant of the submatrix

obtained by eliminating the ith row and jth column of A.

This process of matrix inversion is only applicable to

square matrices that are nonsingular. Given that Bi' Bi is

always a square matrix, the first requirement is satisfied.

The second requirement that the matrix need be nonsingular

is less certain.

Other techniques exist to compute the pseudoinverse of

matrices in cases where the matrix in question may be

singular. Examples include the CROUT [29] and singular value

decomposition [30] techniques. These methods are certainly

preferred for use in actual flight systems performing

inversions on state matrices, since the values in these

matrices are uncertain and may contain many very small or

zero valued items. In fact, the assumption that the column

of Bi corresponding to the failed surface goes entirely to

zero makes Bi singular in its unmodified form. This

assumption forced the removal of that column of Bi in order

to use the above basic inversion method. The reason why the

basic technique is used in the prototype demonstration is

that it is highly computationally intensive, and as such, is

a suitable test of the capabilities of the prototype. Also,

the basic technique, in contrast to the pseudoinverse

techniques, is straightforward in implementation, thereby

simplifying the prototype demonstration effort.

Condensing the basic inversion function, we get
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A (cof A)' / det A.

This function can be accomplished by the following

sequential algorithm replacing step (3) from above:

(3a) Compute det A

(3b) For each A(i,j)

(3c) Compute E = det ( minor ( A(i,j) ) )

(3d) If i+j is odd then E = -E

(3e) E = E / det A

(3f) Store E at C(j,i)

(3g) Next A(i,j)

Obviously, steps (3b) to (3g) involve independent

computations for each element of A. Each element can,

therefore, be handled concurrently.

In as much as the matrix inversion step can be broken

into smaller, potentially parallel substeps, so can the

matrix multiplications and determinants. These functions

also involve independent threads of computation which can

increase parallelism. However, given the matrix sizes

discussed above, it does not seem beneficial to enforce

parallelism at this fine a level. The computations in

parallel should be as intensive, or course grained, as to

justify the added intertask communications and kernel

overhead costs. Also, the number of processors envisioned

(six to eight maximum) and the concentration of parallel

tasks already in the execution regions of the functions
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lessens the impact of the increased parallelism. As a

result, the breakdown of the Ki algorithm has been performed

to a sufficient level to define task units. Figure 6.2

graphically shows the algorithm with its sequential and

parallel sections.

Various methods exist to convert the above algorithm to

tasks and communications. Figures 6.3 and 6.4 show two such

methods. In Figure 6.3, the tasks operate in a dataflow-like

manner. A task executes only after receiving inputs or a

signal to proceed. Each task is of the form:

(1) Receive inputs

(2) Compute results

(3) Send outputs.

The implementation in Figure 6.4 is similar, but takes

the appearance of a main program and subroutines. The KI

task controls the ordering of calls to the four tasks it

communicates with. In turn, the tasks that the C task

communicates with are like subprograms local to the C task.

Data movement is bidirectional, unlike in Figure 6.3 where

it is unidirectional. The numbering in Figure 6.4 represents

the sequencing order of the "calls". "Calls" of equal

sequence number are concurrent. Task communications of this

type are similar to those termed remote procedure calls in

4other literature [31].

The remote-procedure-call-like format has been utilized

in the TN21 prototype system due to the similarities to

*conventional programming. The following sequence of macro

.
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Parallel Axis C i n(A)

del A
Find Minors

A= Bi'*Bi detA(010)
deIA(011)

Bi'Ki =C *D
D=Bi*Bo*Ko detA(n~n)

Cornpute
Inverse

Sequential Axis

Figure 6. 2
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Bi *00*K

Figure 6. 3
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2 3

deAdetA(O.O) ... detA(n~n)

* Figure 6.4
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instructions implement the KI task "mainline" routine from

Figure 6.4:

p.poll transstart,KIdata
c.poll transend,dO-dl,KIdata
p.poll Cstart,KIdata
p.poll m453start,KIdata
c.poll m453end,dO-dl,KIdata
c.poll Cend,dO-dl,KIdata
p.poll m443start,KIdata
c.poll m443end,do-dl,KIdata

A "procedure call" is implemented by a corresponding

p.poll/c.poll pair of macro instructions. Parallel

"procedure calls" are made by multiple p.poll instructions

in sequence. Recall that only c.poll instructions wait for

data exchanges. As a result, the initiation of "calls" to C

and m453 above allow parallel operation of remote procedure

call tasks.

Some parts of the algorithm have strict serial

dependancies. For example, the transpose of Bi has to be

performed before all other parts of the algorithm. As Figure

6.2 graphically demonstrates, the fastest the algorithm can

be completed is roughly the sum total of the times to do a

transpose, two matrix multiplications, and a determinant.

However, this alternative is much better than the sequential

cost of a transpose, three matrix multiplications, and

seventeen determinants (sixteen of which are a part of

cofactor derivations). Chapter 7 will discuss the impact of

parallel processing on the algorithm.

(6.7) Allocation Of Tasks Onto Multiple Processors

The following is the list of tasks used in the Ki
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computation:

KI : "mainline"
trans : take transpose of Bi
m453 : compute D = Bi' Bo Ko
C : initiate computation of C = (Bi' Bi
m454 : compute A = Bi' Bi
Ainv : initiate determinants, compute A
det4 : 4X4 determinant of A
det30-det315: 3X3 determinants of minor( A(i,j)
m443 compute Ki = C D

Each task is given equal priority for the ready queue. The

most efficient operation can be accomplished through proper

ordering on the timer queue, with release times assigned

accordingly.

The assignment of tasks to a single processor is

somewhat simple. The proper ordering on the timer queue is

the same as the order of execution in the serial algorithm.

As such, the above ordering works best for the single

processor case. Timer queue release times have little effect

on the overall performance since trans, m453, m454, m443,

and the determinant tasks will all execute until completion

once initiated. As such, little polling will occur.

In the case of multiple processors, the situation is

not as simple. Care must be taken to evenly distribute the

processing load over the processors, taking execution time

into account. The important idea is to keep potentially

parallel tasks, such as m454 and m453, operating

concurrently. The placement of the c.poll and p.poll

instructions, as demonstrated above for for the KI task,

defines to a large extent this parallelism. Two other basic

rules-of-thumb are as follows. Obviously, the tasks that can

execute in parallel should be separated onto different

4*4l4 r,. 
V .S -
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processors to allow for true concurrent operation. To insure

that the separated tasks can operate efficiently in

parallel, a second rule-of-thumb involves the proper use of

timer queue release times to limit delays in initiation of

tasks due to polling. For example, the determinant tasks

(seventeen in number) cannot possibly start until the

transpose and first two matrix multiplicationz are finished.

If the determinant tasks' PCB's are loaded into the ready

queue at the same time as the other tasks', the mass of

tasks involved in polling could cause delays in tasks

getting started, thereby degrading the effect of

parallelism.

Figures 6.5 and 6.6 give the timer queue orderings for

4.. the processors in the two and three processor configurations

respectively. From these, one can see that the main effect

of parallelism as more processors are added is in the

determinate tasks. Obviously, the best performance to be

expected would involve the use of seventeen processors;

however, the small performance gain would not justify the

Ihardware costs. The next chapter will address performance

measures determined for this algorithm.

10

(6.8) 8061 Hardware Design

No new schematics were required for the 8061 circuit

used. The existing autopilot design provided all the

S required memory and I/O interfaces. The only modification

needed was a change in the type of RAM memory chips used.[.Z Given that the 68000-to-8061 interface dual port RAM was

* already specified for use, these chips were substituted in

H A
P
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2 Processors

Processor 1 Processor 2

1(1 trans

m4 53 C

det38 m4 54

det39 Ainy

det3lO det4

det3ll det3O

det3l2 det31

det313 det32

det3l4 det33

det31-1 det34

m443 det35

det36

det37

Figure 6.5
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3 Processors

Processor 1. Processor 2 Processor3

KI trans m453

C m454 det4

Ainy det3O det36

det312 det3l det37

det3lJ det32 det38

det314 det33 det39

det315 det34 det31O

det35 det311

m443

Figure 6.6
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the schematic design for the static RAM chips previously

there. The 50-pin connector used for I/O interface was left

to allow direct connection to a simulation-interface box

used in previous URV autopilot hardware-in-the-loop

simulations. This configuration allows the prototype to be

"plugged" into the simulation facilities identically as in

previous tests. The resultant circuit occupies the attached

wirewrap board space as shown in Figure 6.7.

(6.9) 8061 Software Modifications

As was mentioned previously, the existing autopilot

functions were left in the 8061 processor to simplify

software changes. Some changes were required, however, to

link the 68000-multiprocessor-based control mixer software

with the basic autopilot. The previous 8061 control mixer

software, consisting of a matrix selection algorithm based

upon failure number, was removed and replaced with a routine

to write the failure number into the dual port memory and

assign the dual port gain matrix address for all failure

cases. As stated before, the 68000 multiprocessor will use

the failure information to compute and store the appropriate

gain matrix for the 8061 autopilot to use.

(6.10) Hardware-in-the-Loop Simulation Configuration

The configuration of the simulation tests is given in

Figure 6.8. The prototype hardware is connected to a device

which contains servos corresponding to each of the control

surfaces on the URV. The prototype hardware commands these

servos directly. The simulation computer detects the servo

I
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Figure 6.7
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movement as input to the airframe simulation. The graphic

display station also provides inputs to the simulator

computer in the form of pilot commands. Rudder, elevator,

aileron, and throttle command input devices are located at

this station. The simulation computer returns sensor data to

the prototype hardware through the servo interface box and

aircraft state data to the graphic display station.

Surface failure is accomplished via switches on the

servo interface box. A failure switch exists for each of the

URV control surfaces. The switch settings are converted by

the servo interface box to inputs to the 8061 circuit in the

prototype. Visual confirmation of the failure can be made

during a test run by monitoring the servo corresponding to

the failed surface. Once failed, the appropriate servo

ceases to move.

With this configuration, the URV multiprocessor

prototype can be tested in a real time environment. The

graphic display provides simulated artificial horizon,

attitude, speed, climb rate, angle of attack, and side slip

angle indicator devices. With these, the "test pilot" can

verify the operation of the hardware under test with an

environment similar to an actual URV flight. This is

important, especially when evaluating performance of the

control mixer under failure conditions.
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(7) Prototype Development and Demonstration Results and

Findings

The purpose for producing and demonstrating a

prototype, such as the one in this research effort, is to

prove the anticipated benefits, identify problems areas,

establish areas of further research, and provide data for

use in later system development stages. The development of

the TN21 prototype multiprocessor system realized these

goals. The anticipated benefit of high throughput capability

was demonstrated through the significant decrease in time to

compute a complex arithmetic function with only a few

processors. Several problem areas have been discovered and

corrected, including some in the applications functions

area. Data has been collected on hardware and software

performance. These aspects will be discussed in this

chapter. Those areas requiring further research will be

identified in Chapter 8.

(7.1) VME Performance and Bus Loading

Chapter 4 addressed the concerns anticipated in the use

of a single bus. The claim made was that, with sufficient

bus bandwidth and limited numbers of processors connected,

bus loading would not become significant. To back up this

claim, analyses were made for the VME bus, both in the

theoretical and physical cases.

79
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(7.1.1) VME Access Options

A discussion of VME access options [32] is first

required. The system bus controller on a VME bus can

implement a priority-based or round-robin-based arbitration

scheme. The VME bus has four priority levels. Each potential

bus master is assigned to one level. The assignment of a bus

in the priority mode of operation is based upon those

priority levels. A processor with a higher priority level is

assigned the bus before a processor with a lower priority.

The round-robin mode, in contrast, offers a scheme based on

fairness. The assignment of the bus is rotated between

priority levels. As such, no given priority level can be

"starved" from bus access. The VME boards purchased provide

- for the selection of either option; however, in the analyses

to follow, round-robin is assumed.

Once a processor is granted the bus, it may either hold

the bus for the entire time required, or only for a single

bus transfer, depending upon the release option. In the

release-when-done (RWD) option, the bus master has control

of the bus until it has completed all of its transfers. In

the release-on-request (ROR) option, another bus master is

assigned after the current transfer, if a request for the

bus is made. Minimal access latency is achieved with the ROR

option. In the purchased boards and the analyses to follow,

this option is used.

* Bus arbitration may either be handled during the

current bus cycle or after the bus cycle. Obviously, maximum

bus bandwidth is achieved with concurrent bus usage and

arbitration. This option is used on the hardware and in the

analyses.

0b
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(7.1.2) VME Bus Access Latency Effects (Theory)

If n processors are to use a single bus and if true

fairness is assumed, a processor may have to wait up to n-i

bus transfer cycles to get access. A basic MC68000 memory

cycle takes four clock cycles to complete, if no wait states

are applied. At a processor clock speed of 10 MHz, 2.5

million transfers per second can be made. This translates to

a memory access time of 400 nanoseconds (nsec).

The VME bus can be viewed as an extension to the

MC68000 bus. To account for signal propogation over the VME

bus and VME bus arbitration, let us assume an additional

* clock cycle per transfer. This assumption increases the

single transfer time to 500 nsec. If six processors are

connected to the VME bus, the maximum bus access latency

would be 2.5 microseconds (usec). This latency is on the

order of the execution time of all MC68000 instructions at a

processor clock speed of 10 MHz. If the ratio of non-bus

accesses to bus accesses is sufficiently high, the added

time for off-board memory cycles is not too significant.

Consider, however, a case where the ratio is not very

large. A block move loop is a near worst case example.

loopl move.w dO,(ao)
cmpa.l aO,al
bne loopl

The above loop takes 2.4 usec at 10 MHz for local memory

accesses. If we use the latency time of 2.5 usec above and

assume the worst case of always suffering the maximum

* latency, the loop will take approximately twice as long over
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the VME bus as for local memory accesses. However, note that

the latency assumptions were based upon six processors

competing for the bus. Even if all six experienced a

simulataneous 100 percent increase in computation time using

near worst case loops such as the one above, the effective

system parallel speed up is a factor of three. Translating

down to a three processor contention scenario, we would see

a 50 percent increase in computation time and a speed up

factor of 2.25.

(7.1.3) VME Bus Access Latency Effects (Measured)

To further illustrate the effects of bus access latency

under the assumptions of the research program, a test was

run on the project hardware to measure actual contention

effects. The RAM test function included in the debugger

monitor utilizes tight loops similar to the one given above.

By installing the monitor code on each of multiple processor

boards and utilizing the RAM test function on each to access

off-board memory, a scenerio like the one above can be

tested. Note that the assumption of always suffering the

worst case latency will not apply here.

Utilizing two processors, a RAM test covering 32 Kbytes

of memory took 55.6 seconds under contention conditions. The

same test took 48.2 seconds without contention. This

translates to approximately a 15 percent increase in

* computation time. Performing the same test with three

contending processors resulted in an execution time of 59.8

seconds (24 percent increase). Note that the measured

results are considerably less than the calculated case in

the previous section; testimony to the fact that the worst

II0illj
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case latency is not frequently realized. The three

processors can achieve a 2.4 factor of speed up in

contention traffic similar to the RAM tests. A six processor

configuration would certainly achieve a much better speed up

factor.

(7.1.4) VME Bus Access Latency Effects (Conclusions)

The result of these simplistic analyses is that the VME

bus is sufficient for the TN21 multiprocessor system, given

the assumption of six to eight processors maximum. Near

worst case loops, such as the one given previously, will not

typically appear in actual applications code, simulateously

on multiple processors. Block transfer loops to shared

memory do appear in the p.poll and c.poll routines. However,

non-VME access to VME access ratios of 200:1 or greater are

typical in the Ki computation routines (25 usec transfer

time to 5 milliseconds (msec) computation time). As a

result, contention is minimal and the concern of "bus

bottleneck" is alleviated. As mentioned before, this

analysis only applies to non-fine-grained compuations. The

applications on the TN21 multiprocessor are assumed to be

coarse grained. Shared memory is used for data transfer and

storage. Local memory is used for intermediate results,

0around which most computation time is spent.

(7.2) Execution Times for Kernel Routines

The performance of the multiprocessor/multitasking

kernel is a key element in the overall system computation

efficiency. Context switches were one such aspect of kernel

U
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performance discussed in Chapter 5. Kernel performance

relates directly to overhead, which is time not spent on

applications functions.

(7.2.1) RTOS Comparisons

[16] gives some typical timings of RTOS's. In general,

context switch times of 75 to 150 usec can be expected with

these commercial products (processor clock speeds unknown).

The times solely represent the time to switch tasks on the

* processor. Other timings, such as for calls for clock

acquisition or mailbox utilization, are not given in the

comparison table; however, typical values of 200 usec for

service calls are mentioned in the text of the reference. In

all fairness, the computation of such figures-of-merit are

difficult, given the variable conditions present (number of

tasks in the system, interrupts, etc). Some attempt will be

made to quantify these for the URV RTMOS.

(7.2.2) RTMOS Timings

The following is a list of execution times for typical

kernel service routines implemented as MC68000 TRAP's in the

RTMOS.

Exit : 85.6 usec
Release-on-poll : 92.8 usec
Sleep : 91.4 + 9n usec
Report-to-system : 38.6 usec

where n = number of positions from the front of the
timer queue where the task is placed

Note that the first three times comprise the basic context

switch routines of the RTMOS . All are comparable to the

0j
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RTOS times referenced above.

Other kernel timings are more critical. For example,

the p.poll and c.poll racros may include release-on-poll

kernel calls, but also contain other areas of overhead. The

p.poll macro takes 34.4 + 2.8x +3.4y usec, where x is the

number of times attempting the MC68000 test-and-set (TAS)

instruction used for data structure mutual exclusion and y

is the number of data words transferred. Typically, a p.poll

will take less than 50 usec; however, if larger amounts of

data (such as a matrix) are transferred, the time may

increase to around 100 usec.

C.poll takes 37.2 + 2.8s + 100.4p +2.8tp + 3.4q +l.6r

usec to complete, where s and t are counts of TAS

executions, p is the number of times through the poll wait

loop (with release-on-poll), q is the number of data words

transferred, and r is the number of 32 bit registers saved.

The minimum c.poll time, assuming no waiting on TAS

instructions or polling variables, is 45 usec. More

realistically, however, s=t=2 and p=l. If we assume q=2 and

r=8, the time for c.poll is 168.4 usec. As with p.poll, if

more data is transferred, the time will increase

* accordingly.

The tick function interrupt service routine (ISR) is

another critical consideration in kernel performance. The

following is a list of functions performed within tick and

the times resulting:

!W1
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Set up and clock update 15.2 usec
Get task from timer queue 3.6 + 41.6m usec
Time slice path 117.6 usec
No time slice path 20.4 usec
Interrupt handling 4.4 usec

where m = number of PCB's released form the timer queue.

The total tick processing time is 140.8 + 41.6m usec if a

time slice is performed and 43.6 + 41.6m if not. Timer queue

staggering of tasks may be desireable to prevent long tick

ISR times which can significantly delay applications tasks

processing. One way or the other, the price in time

eventually has to be paid.

(7.2.3) Implications of the RTMOS Timing Data

The kernel functions discussed above were not optimized

for minimal execution time. Optimization is for final

products, such as the RTOS products referenced, not for

prototype systems. However, in all likelihood, very little

significant improvement would be expected. At any rate, the

times noted are comparable or better than those for

commercial products.

One area where improvement could be made is in the

timer queue storage routines. The current implementation

searches the timer queue from front (least time to release)

to rear to determine where the task should be placed. In

actual use, most tasks would probably be placed closer to

the end of the queue. As such, minimal search time would

likely be achieved by beginning at the rear of the queue,

moving forward.

The most critical implication of the timing data given

involves the tick routine. A minimum tick execution would

4
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take 43.6 usec. Since a tick takes place once per

millisecond, an automatic minimum overhead of 4.4 percent is

realized. One time slice or a couple of releases from the

timer queue would increase this to around 140 usec, or 14

percent. Although the meins to improve the routine

performance-wise have not yet been investigated, any

optimization work on the kernel should be concentrated on

the tick routine first. Interestingly enough, none of the

RTOS's referenced give data on this timing characteristic,

although all must have similar functions.

(7.3) Applications Computation Times

As with the kernel functions above, the applications

tasks developed for the prototype were not optimized. For

example, more extensive use of the floating point registers

within the MC68881 floating point coprocessor as

accumulators would have saved many processor-coprocessor

data transfers. Optimization of these routines, however,

would not have served to demonstrate the goals of this phase

of development. Of more importance to these goals is the

demonstration of significant speed up and minimal overhead

when parallelism is applied to the problem.

(7.3.1) Sequential Limitations

As discussed in Chapter 6, Figure 6.3 demonstrates that

the fastest time to compute the Ki function can be

approximated by the sum total of the times to do the

transpose, two matrix multiplications, and a 4X4

determinant. The times for these are given by
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trans : .82 msec
m454 : 10.60 msec
m443 : 6.78 msec
det4 : 6.68 msec

The sequential limitations of the algorithm, therefore,

bound the computation time to no better than about 25 msec,

no matter how much parallelism is applied.

(7.3.2) Measured Computation Times

Measurements of the actual times to compute the Ki

algorithm were taken. Before the algorithm was parallelized,

it was developed as a single processor, sequential program.

This version took 59 msec to complete. The parallelized

version required shared memory data exchanges via c.poll and

p.poll instructions acting as remote procedure calls. Also,

kernel overhead had some effect. The resulting times

measured for the parallelized version using RTMOS are as

follows:

1 processor : 69 msec
2 processors : 47 msec
3 processors : 36 msec

aAs expected, the single processor version using the RTMOS

suffers some overhead penalties (17 percent total). As

parallelism is applied, however, the execution time drops

accordingly.

As confirmation, Figure 7.1 demonstrates the division

of tasks onto three processors. The fast--st computation time

for this division is the sum total of the transpose, two
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Processor 1 Processor 2 Processor 3

RI trans .82
C
Ainy

m454 m453 10.60

det4 6.68

det3l2 det3O det36
det3l3 det3l det37
det3l4 det32 det38
det3l5 det33 det39 10.44

det34 det3lO
det35 det31l

m4 43 6.78

Total 35.32 m

* Figure 7.1
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matrix multiplications, one 4 X 4 determinant, and six 3 X 3

determinants. Each 3 X 3 determinant was measured to take

1.74 msec. The total, therefore, is 35.32 msec. This figure

confirms the total algorithm computation time for three

processors as given previously.

(7.3.3) Implications of Execution Time Data

One extra data point can be derived from the three

processor timing confirmation in the previous section. Note

that the difference between the total algorithm time and the

sum total of the sequential parts is less than one

millisecond. This translates to an overhead contribution of

around 3 percent for context switches and tick handling. A

previous section had predicted a minimum overhead

contribution of 4.4 percent just for tick compuations. These

figures are fairly close, and serve to confirm expectations.

They also indicate that context switching times are

negligable. This finding is significant in that it

demonstrates that polling does not contribute a high cost to

the overall results.

The 17 percent increase in execution time from the

sequential to single processor RTMOS versions can be

attributed to two main factors. First, the overhead

contribution of tick varies from a minimum of about 4

percent to as much as 33 percent during a time period when

eight tasks are released from the timer queue. These peaks

are rare, but still contribute to the overall overhead

figures.

Secondly, the choice was made in the applications tasks
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design stage to pass entire matrices through some p.poll and

c.poll exchanges. In the sequential version, all accesses

were local, so only addresses were passed between routines.

The process of passing matrices is time consuming and could,

in some cases, be replaced by matrix addresses. A side

effect to this, however, is that intermediate computations

would take place out of shared memory, rather than local

memory.

(7.4) Timer Queue Utilization Timing

One hypothesis made in the early stages of the URV

RTMOS concept development was that proper timer queue

release time staggering would be required in order to limit

the adverse effects of polling on performance. As

demonstrated in the previous section, RTMOS polling has a

minimal effect with coarse grained parallel computing. This

finding would seem to indicate that staggering is less

critical than expected. As confirmation, the applications

problem was run with RTMOS on a single processor using and

not using timer queue staggering. The result was an

identical 69 msec execution time for both versions.

Although the lessened effect of polling can be

attributed somewhat to this finding, another reason was

discovered. After one iteration through the ready queue and

processor, the timer queue becomes naturally staggered,

regardless of its initial state. This effect is caused by

the execution time of tasks on the processor and the

subsequent delay in successor tasks beginning. Tasks are

placed back on the timer queue as they complete; and, as

such, have their next release time delayed accordingly. As a

I
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result, only the first iteration is affected by the non-

staggering order. All other iterations become naturally

ordered and execute at optimal speed.

(7.5) Results of the Prototype Hardware-in-the-Loop

Simulation

The prototype hardware, RTMOS, and control mixer

applications tasks were tested under the simulation

conditions described in Chapter 6. The simulation responded

to the failures induced much as expected. The failure

0 responses will be discussed below. In the development and

initial tests of the applications tasks, errors in the Bo

matrix were discovered. The problem and the corrections used

will also be discussed. As mentioned in Chapter 6, the

reader is directed to the references and other literature

for further details concerning flight control, the URV

aircraft, and the control mixer.

(7.5.1) Simulation Response to Failures

The control mixer model used was a five control surface

model utilizing two elevators, two ailerons, and a rudder. A

later model [33] utilizes two additional surfaces (flaps) on

the URV which can be used to provide better response to

failures, particularly in the roll axis. However, lack of

sufficient information on this later model during the

development stages prevented its use. Still, the earlier

model provided for a sufficient computational load to test

the multiprocessor.

The response to elevator failures was the best of all
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cases. When one of the elevators was failed, the mixer

provided double the authority to the other elevator in the

pitch axis, and utilized the ailerons to assist in pitching

the aircraft. The resultant response was suitable pitching

control with a slight initial roll (corrected by the

autopilot). The roll seemed to be induced by the aileron

movement commanded by the mixer to assist the single

elevator in pitching. Roll and yaw motion was not affected

by an elevator failure, as expected.

Aileron failure response was not as good. As confirmed

by off-line derivation of the gain matrix, the mixer

0 response to an aileron failure was to effectively zero out

A the gain to the other aileron and the rudder in the roll

axis so that only the elevators were used to roll the
aircraft. The result was a sluggish roll response with

significant downward pitching motion. This response was to

be expected since the elevators have far more force in the

pitch axis than in the roll axis. A better response would be

to give more authority to the remaining aileron, such as was

done for the remaining elevator in the failed elevator case

discussed above. This observed response comes directly from

the control mixer algorithm and URV model. The prototype

calculations were confirmed by off-line matrix computations.

As discussed in [28], the rudder failure response, as

computed by the control mixer, leads to unstable aircraft

control. This is due to the fact that the elevitors and

ailerons do not have sufficient authority in the yaw axis to

compensate for a rudder failure. As a result, the gains

become excessive and the surfaces saturate. Again, this

0 V
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response is a control mixer problem, not a prototype

calculations problem.

(7.5.2) Bo Value Errors

In the development of the control mixer applications

tasks, errors in the Bo matrix were discovered.

Documentation on later URV control mixer work [33] was

located, and an updated Bo was used. The primary difference

between the original Bo matrix and the later version

involved surface polarities. Differences existed between the

surface direction assumptions made in the early stages of

control mixer development and the actual aircraft set up.

These differences were corrected in the later work. With the

new Bo matrix installed, the expected responses, noted

above, were observed.

(7.5.3) Potential Resolution Problems

One final observation on the control mixer applications

used, and the 8061 autopilot, concerns the resolution of

numbers calculated for the gain matrix. The numbers derived

for the Ki gain matrix ranged from less than .001 to around

25. However, the conversion algorithm used to change the

numbers to a form usable by the 8061 autopilot only allows

for four bits of resolution to the right of the decimal

point (fixed point format). As a result, the smallest gain

magnitude greater than zero possible is .0625. Any gain

magnitude smaller than this will be converted to zero. The

conversion truncation is the reason why the remaining

aileron and rudder gains, in the failed aileron case, are

zero. Some authority is actual assigned in the floating

0
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point calculations, but the gains are below the truncation

threshold, and are lost in the conversion process. Further

work may be needed in this area if further work on the

control mixer is to be performed on the prototype.

e

.f.
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(8) Conclusions

In order to make effective use of the new vehicle

airframe being designed and constructed, and to provide high

speed computing capabilities for embedded tests, AFWAL/FIGL

has made the decision to develop a new avionics/control

system incorporating a low cost multiprocessor architecture

and software operating system. The effort is being performed

in-house, utilizing years of multiprocessor system analysis,

design, development, programming, and test experience. The

* first phase of this effort, described herein, has produced

and demonstrated a prototype of this system. Multiple off-

the-shelf MC68000 processor boards have been combined with a

VME backplane bus and wirewrapped 8061 I/O circuitry and

MC68881 coprocessors to form the hardware of the prototype.

A real time multiprocessor/multitasking operating system

(RTMOS) has been specified and developed to manage the

parallel software units (tasks) of the system.

Interprocessor communications protocols, and a simple

methodology to use them to develop coarse grained parallel

code, have also been developed.

The development of the URV multiprocessor

avionics/control system is not yet finished. The next phase

of development will bring the system closer to its

completion by refining and enhancing the prototype in

several areas. The 8061 I/O circuitry will be interfaced to

the VME bus as originally specified. Additional MC68000

boards will be utilized to provide even more computing

96
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power. The RTMOS will be fine-tuned for more efficient

operation. Task assignment will be made dynamic,

distributing the task load to the number of processors

present. Research will be performed to specify and test a

better multiprocessor clock synchronization scheme. The

applications tasks will be enhanced to allow for a seven

surface control mixer model that will be responsive to

multiple surface failures.

In the longer term, the system hardware will need to be

evaluated and modified for flight operation. An extensive

verification procedure will also be required. Development

and test of parallel software will have to be addressed from

an applications programmer viewpoint. High order languages

will need to be applied in order to make this software

manageable. The impacts of changing airframe configurations

on the control model and software will have to be assessed.

A technique to allow L.hanges to occur with minimal impact on

software will be required.

In short, much work remains to be performed before the

URV multiprocessor system is ready for actual

implementation. Still, much has been accomplished; the

foundation has been laid. Multiprocessor technology is

beginning to see application in many areas. The low

cost/risk URV research testbed is one area where significant

payoffs can be realized.
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Appendix A4

Schematics
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